Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In 2018, the International Maritime Organization adopted a plan to reduce greenhouse gas emissions from ships. As a result, ocean carriers and cruise lines are exploring alternative fuels, such as ammonia, which offers zero CO2emissions. Understanding ammonia-based fuel’s impact on range, speed, and fuel logistics can help companies assess its benefits and limitations. To address this, a mixed-integer non-linear programming model is developed to determine the optimal ships’ routes with the objective of minimizing the total travel time while considering factors such as ship speeds, refueling time, and the non-linear fuel consumption rates. A unique aspect of this study is the consideration of a group of ships with different origins and destinations. To solve the non-linear and NP-hard model, a hybrid genetic algorithm–particle swarm optimization algorithm is developed. The proposed model and meta-heuristics are demonstrated using an actual network consisting of ports around the world. Numerical results from a full factorial design with three factors (number of ships, number of origins, and number of destinations) comparing the travel time differences between using ammonia and conventional fuel indicate that NH3-fueled ships generally experience longer travel times than jet-propulsion fuel 8-fueled ships because of NH3’s lower energy density and more frequent refueling requirements. On average, the increase in total travel time is less than 20%. This study serves as a foundation for decision-makers who must also consider additional factors such as economic feasibility, infrastructure costs, environmental impact, and regulatory requirements when assessing ammonia’s viability as an alternative fuel for fleet-wide adoption.more » « lessFree, publicly-accessible full text available June 27, 2026
-
Electrochemical acetate oxidation (AcOR) offers a sustainable approach to produce renewable biofuels. While CO₂ formation is thermodynamically favored, acetate oxidation can also yield various products through the Kolbe and Hofer-Moest mechanisms, enabling the scope for modulating product formation via partial oxidation. Given the complexity of the reaction, it is crucial to understand how different reaction conditions influence the product profile. Furthermore, this process generates methyl radicals, providing insights into methane partial oxidation. The current study explores AcOR on noble metal electrodes (Pt, Pd, Au) in a 0.5 M CH3COOK aqueous electrolyte, revealing the mechanism of product formation using potential- and time-dependent electrolysis and isotope labeling experiments. The effect of surface chemistry, ion transport, electrolyte concentration, and electrolysis techniques on product selectivity is analyzed. Additionally, the study compares product profiles from an electrolyzer cell to those obtained from model electrodes in batch cell setup.more » « lessFree, publicly-accessible full text available November 1, 2025
-
null (Ed.)Anion exchange membrane fuel cells (AEMFC) are potentially very low-cost replacements for proton exchange membrane fuel cells. However, AEMFCs suffer from one very serious drawback: significant performance loss when CO2 is present in the reacting oxidant gas (e.g., air) due to carbonation. Although the chemical mechanisms for how carbonation leads to voltage loss in operating AEMFCs are known, the way those mechanisms are affected by the properties of the anion exchange membrane (AEM) has not been elucidated. Therefore, this work studies AEMFC carbonation using numerous high-functioning AEMs from the literature and it was found that the ionic conductivity of the AEM plays the most critical role in the CO2-related voltage loss from carbonation, with the degree of AEM crystallinity playing a minor role. In short, higher conductivity—resulting either from a reduction in the membrane thickness or a change in the polymer chemistry—results in faster CO2 migration and emission from the anode side. Although this does lead to a lower overall degree of carbonation in the polymer, it also increases CO2-related voltage loss. Additionally, an operando neutron imaging cell is used to show that as AEMFCs become increasingly carbonated their water content is reduced, which further drives down cell performance.more » « less
-
Anion exchange membrane fuel cells (AEMFCs) have been widely touted as a low-cost alternative to existing proton exchange membrane fuel cells. However, AEMFCs operating on air suffer from a severe performance penalty caused by carbonation from exposure to CO2. Many approaches to removing CO2from the cathode inlet would consume valuable energy and complicate the systems-level balance-of-plant. Therefore, this work focuses on an electrochemical solution where CO2removal would still generate power, but not expose an entire AEMFC stack to carbonation conditions. Such a system consists of two AEMFCs in series. The first AEMFC, which acts as an anion exchange CO2separator (AECS), is relatively small and serves to scrub CO2from the air. The AECS is powered by the hydrogen bleed from the second (i.e., main) AEMFC. A small amount of hydrogen is bled from the recycled hydrogen used in the main AEMFC to mitigate impurity build-up, including nitrogen gas from diffusion across its membrane. The second, main AEMFC operates on the purified air output from the AECS and fresh H2. This work shows that it is possible to use an AECS to lower the CO2concentration in the AEMFC input air stream to values low enough that the main AEMFC can be operated stably for extended periods, 150 h in this demonstration. Also, in this study, AEMFCs are operated on AECS-purified air without experiencing a performance penalty. Lastly, the relative geometric active area of the AEMFC and AECS devices are evaluated and discussed.more » « less
-
It has been long-recognized that carbonation of anion exchange membrane fuel cells (AEMFCs) would be an important practical barrier for their implementation in applications that use ambient air containing atmospheric CO 2 . Most literature discussion around AEMFC carbonation has hypothesized: (1) that the effect of carbonation is limited to an increase in the Ohmic resistance because carbonate has lower mobility than hydroxide; and/or (2) that the so-called “self-purging” mechanism could effectively decarbonate the cell and eliminate CO 2 -related voltage losses during operation at a reasonable operating current density (>1 A cm −2 ). However, this study definitively shows that neither of these assertions are correct. This work, the first experimental examination of its kind, studies the dynamics of cell carbonation and its effect on AEMFC performance over a wide range of operating currents (0.2–2.0 A cm −2 ), operating temperatures (60–80 °C) and CO 2 concentrations in the reactant gases (5–3200 ppm). The resulting data provide for new fundamental relationships to be developed and for the root causes of increased polarization in the presence of CO 2 to be quantitatively probed and deconvoluted into Ohmic, Nernstian and charge transfer components, with the Nernstian and charge transfer components controlling the cell behavior under conditions of practical interest.more » « less
An official website of the United States government
